Computing Science Group Geometry of abstraction in quantum computation
نویسنده
چکیده
Quantum algorithms are sequences of abstract operations, performed on non-existent computers. They are in obvious need of categorical semantics. We present some steps in this direction, following earlier contributions of Abramsky, Coecke and Selinger. In particular, we analyze function abstraction in quantum computation, which turns out to characterize its classical interfaces. Some quantum algorithms provide feasible solutions of important hard problems, such as factoring and discrete log (which are the building blocks of modern cryptography). It is of a great practical interest to precisely characterize the computational resources needed to execute such quantum algorithms. There are many ideas how to build a quantum computer. Can we prove some necessary conditions? Categorical semantics help with such questions. We show how to implement an important family of quantum algorithms using just abelian groups and relations.
منابع مشابه
Sweep Line Algorithm for Convex Hull Revisited
Convex hull of some given points is the intersection of all convex sets containing them. It is used as primary structure in many other problems in computational geometry and other areas like image processing, model identification, geographical data systems, and triangular computation of a set of points and so on. Computing the convex hull of a set of point is one of the most fundamental and imp...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملA novel vedic divider based crypto-hardware for nanocomputing paradigm: An extended perspective
Restoring and non-restoring divider has become widely applicability in the era of digital computing application due to its computation speed. In this paper, we have proposed the design of divider of different architecture for the computation of Vedic sutra based. The design of divider in the Vedic mode results in high computation throughput due to its replica architecture, where latency is mini...
متن کاملA New Model Representation for Road Mapping in Emerging Sciences: A Case Study on Roadmap of Quantum Computing
One of the solutions for organizations to succeed in highly competitive markets is to move toward emerging sciences. These areas provide many opportunities, but, if organizations do not meet requirements of emerging sciences, they may fail and eventually, may enter a crisis. In this matter, one of the important requirements is to develop suitable roadmaps in variety fields such as strategic, ca...
متن کاملQuantum NP and Quantum Hierarchy
The complexity class NP is quintessential and ubiquitous in theoretical computer science. Two different approaches have been made to define “Quantum NP,” the quantum analogue of NP: NQP by Adleman, DeMarrais, and Huang, and QMA by Knill, Kitaev, and Watrous. From an operator point of view, NP can be viewed as the result of the ∃-operator applied to P. Recently, Green, Homer, Moore, and Pollett ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009